A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect

نویسندگان

  • Luca Regazzoni
  • Barbora de Courten
  • Davide Garzon
  • Alessandra Altomare
  • Cristina Marinello
  • Michaela Jakubova
  • Silvia Vallova
  • Patrik Krumpolec
  • Marina Carini
  • Jozef Ukropec
  • Barbara Ukropcova
  • Giancarlo Aldini
چکیده

Carnosine is a natural dipeptide able to react with reactive carbonyl species, which have been recently associated with the onset and progression of several human diseases. Herein, we report an intervention study in overweight individuals. Carnosine (2 g/day) was orally administered for twelve weeks in order to evaluate its bioavailability and metabolic fate. Two carnosine adducts were detected in the urine samples of all subjects. Such adducts are generated from a reaction with acrolein, which is one of the most toxic and reactive compounds among reactive carbonyl species. However, neither carnosine nor adducts have been detected in plasma. Urinary excretion of adducts and carnosine showed a positive correlation although a high variability of individual response to carnosine supplementation was observed. Interestingly, treated subjects showed a significant decrease in the percentage of excreted adducts in reduced form, accompanied by a significant increase of the urinary excretion of both carnosine and carnosine-acrolein adducts. Altogether, data suggest that acrolein is entrapped in vivo by carnosine although the response to its supplementation is possibly influenced by individual diversities in terms of carnosine dietary intake, metabolism and basal production of reactive carbonyl species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological functions of histidine-dipeptides and metabolic syndrome

The rapid increase in the prevalence of metabolic syndrome, which is associated with a state of elevated systemic oxidative stress and inflammation, is expected to cause future increases in the prevalence of diabetes and cardiovascular diseases. Oxidation of polyunsaturated fatty acids and sugars produces reactive carbonyl species, which, due to their electrophilic nature, react with the nucleo...

متن کامل

Targeting Reactive Carbonyl Species with Natural Sequestering Agents.

Reactive carbonyl species generated by the oxidation of polyunsaturated fatty acids and sugars are highly reactive due to their electrophilic nature, and are able to easily react with the nucleophilic sites of proteins as well as DNA causing cellular dysfunction. Levels of reactive carbonyl species and their reaction products have been reported to be elevated in various chronic diseases, includ...

متن کامل

Carnosine and protein carbonyl groups: a possible relationship.

Carnosine has been shown to react with low-molecular-weight aldehydes and ketones and has been proposed as a naturally occurring anti-glycating agent. It is suggested here that carnosine can also react with ("carnosinylate") proteins bearing carbonyl groups, and evidence supporting this idea is presented. Accumulation of protein carbonyl groups is associated with cellular ageing resulting from ...

متن کامل

Carnosine attenuates cyclophosphamide-induced bone marrow suppression by reducing oxidative DNA damage

Oxidative DNA damage in bone marrow cells is the main side effect of chemotherapy drugs including cyclophosphamide (CTX). However, not all antioxidants are effective in inhibiting oxidative DNA damage. In this study, we report the beneficial effect of carnosine (β-alanyl-l-histidine), a special antioxidant with acrolein-sequestering ability, on CTX-induced bone marrow cell suppression. Our resu...

متن کامل

Reaction of carnosine with aged proteins: another protective process?

Cellular aging is often associated with an increase in protein carbonyl groups arising from oxidation- and glycation-related phenomena and suppressed proteasome activity. These "aged" polypeptides may either be degraded by 20S proteasomes or cross-link to form structures intractable to proteolysis and inhibitory to proteasome activity. Carnosine (beta-alanyl-l-histidine) is present at surprisin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016